Module Handbook of Agro-industrial Microbiology | Module designation | Agro-industrial microbiology is a course designed specifically for students from Agricultural Microbiology study program, Department of Agricultural Microbiology, Faculty of Agriculture. This course focuses on the fundamentals of agro-industrial microbiology and how it applies to the agro-industrial field. The technology used in the industry based on microorganisms is also covered in this course. | |---|--| | Semester(s) in which the module is taught | Fourth Semester | | Person responsible for the module | Prof. Ir. Triwibowo Yuwono, Ph.D. | | Language | Bahasa Indonesia/Indonesian Language | | Relation to curriculum | Elective Course | | Teaching methods | Lecture are conducted in the class with 30-40 students. In every meeting, there will be delivered interactive lecture and discussion. In some topics there will be quizzes, individual and/or group assignment. Details: | | | Lectures Assignment (Individual and Group) Discussion Midterm Final Exam Laboratory Work | | Workload (incl. contact hours, self-study hours) | - Lectures = 2 SKS x 50 minutes x 16 meetings = 1.600 minutes = 26,67 hours = 26,67 hours/27,1 hours = 0,98 ECTS - Assignment = 2 SKS x 60 minutes x 16 meetings = 1.920 minutes = 32 hours = 32 hours/27,1 hours = 1,18 ECTS - Self Study = 2 SKS x 60 minutes x 16 meetings = 1.920 minutes = 32 hours = 32 hours = 32 hours/27,1 hours = 32 hours/27,1 hours = 1,18 ECTS - Practicum = 1 SKS x 170 minutes x 16 meetings = 2.720 minutes = 45,33 hours = 45,33 hours/27,1 hours = 1,67 ECTS Total Workload = 5,01 ECTS | | Credit points | 2/1 Credit Points | | Required and recommended prerequisites for joining the module | Biology of Microorganisms | | Examination forms | | hinking Skills Ex | eting) | Score | - | | |--|---|--------------------------------------|---|---|--|-----------------| | | 14. Materia | als Review (1 me | | | | | | Content | Introduction to Agro-industrial Microbiology (1 meeting) Microbes used in industrial field (1 meeting) Media for microorganism-based industries (1 meeting) Microbial industrial products (1 meeting) Culture Technique and Management (1 meeting) Food Fermentation Industry (1 meeting) Biofertilizer and Biopesticide Production (1 meeting) Yeast-based fermented products (1 meeting) Production of Phosphate Solubilizing and Growth Promoting Inoculum (1 meeting) Production of Microbial Enzymes (1 meeting) Solid Waste Management (1 meeting) Antibiotic Fermentation (1 meeting) Materials Review (1 meeting) | | | | | | | | Course Learr
CLO1: Stude
Microbiology
CLO2: Stude
and their pro | nts can explain | CLO):
the fundame
about the r | ental concepts o | of Agroindustr
based industr | ies | | rearring outcomes | develop mic
environment
PLO2: Able to
to create
developmen | o describe the la
environmentally | chnology to
test methodo
y friendly | increase plant
ology in the field
and sustainal | production a
d of microbiolo
ble agricultu | nd
gy
ral | | Module objectives/intended learning outcomes | | arning Outcomes | s (PLO): | | | - 1 | B/C 67,0-69,9 Ε <49 | Study and examination requirements | To be able to take the final exams, the minimum of student attendance is 70% out of effective meetings. From 14 meetings, students must take a minimum of 10 meetings to take the exam. | |------------------------------------|--| | Reading list | Main References: Hrudayanath, T. Pradeep, K., Sonali, M. Keshab, C. 2020. Microbial Fermentation and Enzyme Technology. CRC Press, Boca Raton. Ray, Ramesh, C. Rosell, C. 2017. Microbial enzyme technology in foord application. CRC Press. Farshad Darvishi Harzevili and Hongzhang Chen (Eds.). 2015. Microbial Biotechnology. Progress and Trends. CRC Press, Taylor and Francis Group. Nduka Okafor and Benedict C. Okeke. 2018. Modern Industrial Microbiology and Biotechnology. Second edition. Taylor and Francis. Peter F. Stanbury, Allan Whitaker, and Stephen J. Hall. 2017. Principles of Fermentation Technology. Third edition. Elsevier Additional references: Scientific journals related to microbial ecology and their applications | | | for environment 2. Laboratory Classes in Agro-industrial Microbiology Handbook |